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Figure 3. Models used to calculate static and dynamic contrast.
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Static and Dynamic Terms

I = Static Contrast I = Dynamic Contrast

Contrast = Is + <Id>
Stability = sqrt(2Is<Id> + <Id

2>)

Is = Static Contrast

Wave Front Sensing
Wave Front Control

Id = Dynamic Contrast

Pointing Stability
Thermal and Jitter

Gravity Sag Prediction
Print Through
Coating Uniformity
Polarization

Motion of optics
Beam Walk
Aberrations

Bending of opticsNow we have Polarization
Mask Transmission
Stray Light
Micrometeoroids

Bending of optics
Aberrations

Now we have 
Much better 
knowledge of:

Contamination
Every item is 
unknown territory, 
new technology

Solve with Design and 
Engineering, linear 
modeling

In 2005, we said:
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new technology.
Most are bandwidth-
dependent

modeling.
Bandwidth independent.
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Aberration Sensitivity at 2 /D

COMA
PIAA, 
2 /D

Aberration Sensitivity at 2 /D

BL4 VNC

10-8

PIAA, 
4 /D

BL4, VNC 
4 /D

10

Shaped Pupil,
4 /D

Earth requirement 
(picometer)

BL8

Increase sensitivity to aberration 
by > 2 orders of magnitude over

Jupiter requirement (Angstroms)
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BL8,
4 /D

by  2 orders of magnitude over  
4 /D design
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Executive Summary: Thermal Performance 
Models and Analysis

E l t d Th l T l Dither Angle from 195º to 225º (worst case) • Evaluated Thermal Tools:
– TSS/SindaG, TMG, IMOS

• Thermal Model & Run 
Information is provided

0 C154e-6 C

-.00463 C

-.00269 C

Science
Payload

Primary 
Mirror

g ( )

• Performance evaluation:  Dither 
angle from 195º to 225º is worst 
case

• Evaluated Temperature Control

-229e-6 C

0 C

-.000744 C

154e-6 CPayload

195 deg225 deg

Evaluated Temperature Control 
Heater Powers -.01 C

0 C

Bottom View

TMG Models

SMA

-.00125 C -.01 C

Transient results – all PM nodes, 
worst case dither

2x10-52x10 5

(ΔºC)
• Conclusions:

– Even with worst case 
conditions, appear to be 
meeting requirements 
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Surface Requirements
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Executive Summary: Structural Performance 
Models and Analysis

• Currently WFE’s & Rigid Science Payload SMAIDEALIZATIONS• Currently, WFE s & Rigid 
Body motions of optics are 
within the error budget  

– for thermal disturbance
• Toolsets work well so far, and 

tti b tt

6 Layer V-groove
Tensioned Kapton

114 kg

y
FEM
14,028 Nodes   (84K 
dofs)
19,536 Elements
5,611 kg Total for 
Payload

Primary 
Mirror
1065 kg

158 kg
• No hinges, latches or 
fittings modeled

• No temperature 
dependent properties

• Uniform properties 
for like materialsare getting better

– Looking forward to significant 
capability increase shortly

– Lessons-learned: problems 
encountered & solved (or worked-
aro nd) Combined System FEM

g

SM
Tower
411 kg

for like materials

• Lumped & smeared 
masses for non-struct 
hardware to match 
mass-list

• Uniform, linearized 
model of tensionedaround)

• We need to account for CTE 
variation in PM

– Taking CTE variation into account 
generally results in higher WFEs 
th i if CTE

18,166 Nodes   (109K dofs)
25,895 Elements
7,160 kg Total for Flt 
System

Solar Array
66 kg Mid-Fidelity PM

2,785 Nodes   
6,492 Elements

model of tensioned 
membranes to capture 
geom stiffness

• Mid-Fi PM 
model captures 
overall dynamic 
& thermalthan assuming uniform CTE

– Initial calculations in work
• Primary Mirror front-to-back 

delta-temperature drives 
distortion 

Solar Sail Assy
30 kg

Equivalent solid 
elements for core

Plate elements
for top, bot & 

sides

& thermal 
distortion, but 
not local print-
thru effects

M
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s

Lateral (Z)

L t l (Y)
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– Focus & Astigmatism are biggest 
contributors to WFE

• Design feasibility looks good: 
no major road-blocks

– Keep in mind the many
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Keep in mind the many 
idealizations made so far: more 
detail modeling to follow
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High-Level Requirements

Table 1.  TPF-Coronagraph Contrast Error Budget Requirements.

Requirement Comment
Static Contrast 6.00E-11 Coherent Terms
C t t St bilit 2 00E 11 Th l + JittContrast Stability 2.00E-11 Thermal + Jitter
Instrument Stray Light 1.50E-11 Incoherent light
Inner Working Angle 4/Dlong 57 mas at=550 nm, Dlong = 8 m
Outer Working Angle 48/Dshort 1.5 arcsec at=550 nm, Dshort = 3.5 mg g short short

Bandpass 500-800 nm Separate observ. in three 100 nm bands.
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The test: Using a band-limited mask form a dark hole using the Electric FieldThe test: Using a band-limited mask, form a dark hole using the Electric Field 
Conjugation algorithm.  Then reset the DM to nominally flat, wait 8 days, and 
repeat.

P t

0 6

0.8

1x 10-9

Difference of summed bands

20

HCIT Broadband Dark Hole

Day 1 Day 9 Difference
Simulated 

Parameters:

3 filters,
each band 2% wide
C t d 800 816

0.2

0.4

0.620

40

S u ated
planetCentered on 800, 816, 

and 832 nm.

D-shaped dark hole: 
IWA 4 /D

-0 4

-0.2

060

80

IWA = 4 /D
OWA = 10 /D

Add in simulated planet in 
second data set

-0.8

-0.6

0.4

20 40 60 80 100 120 140

100

120
 = 6.8x10-10  = 6.8x10-10  = 2.3x10-10

second data set. 
Peak contrast = 1e-9

Sum together the bands 
to form composite 6%

TPF Coronagraph Flight Baseline 1 Design PresentationFebruary 22, 2008 9
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bandwidth images.
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Error Budget Structure
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Incoherent Background R7 Background
Contrast

Figure 1. Error Budget Structure. ‘C-matrix’ is a sensitivity matrix or equation. 
R1-R7 are multiplicative reserve factors.  

Incoherent 
Terms
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Beam Walk Model

Contrast from 
Beam Walk
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Control Systems

• 3-tiered pointing control
– Rigid body pointing using reaction wheels or Disturbance-Rigid body pointing using reaction wheels or Disturbance

Free Payload
– Secondary mirror tip/tilt (~ 1 Hz)
– Fine-guiding mirror (several Hz)

• PM-SM Laser Metrology and Hexapod
– Measures and compensates for thermal motion of 

secondary relative to primary.
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Pointing Control

Rigid Body 
Pointing Control PSD Models

Disturbance

Secondary

Pointing Control

4 mas

2ndry Beam Walk
C-Matrix Dx CBW

Telescope Model MACOS FGM

0.4 mas

0 04

C Matrix

FGM Beam Walk
C-Matrix Dx CBW Contrast

Telescope

0.04 mas

Telescope Beam 
Walk C-Matrix Dx CBW

Figure 2. Pointing control. The CEB assumes a nested pointing control system. Reaction wheels and/or a Disturbance Reduction System  control rigid 
body motions to 4 mas (1 sigma).  The telescope secondary mirror tips and tilts to compensate the 4 mas motion but has a residual due to bandwidth 
limitation of 0 4 mas A fine guiding mirror in the SSS likewise compensates for the 0 4 mas motion leaving 0 04 mas uncompensatedlimitation of 0.4 mas.  A fine guiding mirror in the SSS likewise compensates for the 0.4 mas motion leaving 0.04 mas uncompensated.
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Key Dynamics Requirements
PM shape: (Thermal and Jitter)
z4=z5=z6=z8=z10=0.4 nm Secondary:zz4 z5 z6 z8 z10 0.4 nm
z7=0.2 nm, z11=z12=5 pm Thermal: x=65 nm, 

z=26 nm,
tilt=30 nrad
Jitter: 20x smaller

Laser metrology:

z

Mask centration:

gy
L=25nm
f/f=1x10-9

4 mas rigid 
body 
i ti

Fold mirror 1: 
rms static surf =0.85nm
Thermal: 10nrad, 100 nm
Jitter: 10 nrad, 10 nm

Mask centration:
offset=0.3 mas
amplitude=0.3mas

Mask error = 
5e-4 at 4 /D

pointing
Figure 5. We identify the major engineering
requirements to meet the dynamic error
budget. Thermally induced translations lead
to beam walk that is partially compensated

Coronagraph optics motion:
Thermal:10nrad 100nm

p y p
by the secondary mirror. Jitter is partially
compensated by the fine guiding mirror.
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Thermal:10nrad, 100nm
Jitter: 10 nrad, 10 nm
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Iterative Design/Analysis Cycle Process

C l " " C l " 1"Cycle "n" Cycle "n + 1"

Changing Conditions
• Emerging Requirements

Design Evolution
• Alternate Concepts

Design Freeze

• Emerging Requirements
• Reprioritized Goals
• New Constraints

• Alternate Concepts
• Trade Study Results
4/1/05

10/07/055/6/05Design Freeze
• Systems Eng'rg
• Baseline Design
• CAD model

Analysis Plan
• Results Goals
• Case Priorities

Design Refinement Decisions
• Updated Baseline Design
• Updated Req’s for Cycle n+1

10/07/05

Model Creation
• Optical

p q y
• Consolidated Alternate Design(s)

5/6/05

Sensitivity Analyses &• Optical 
• Structural FEMs
• Thermal
• Dynamics

Integrated 
Analyses

• Nominal Design 
& Conditions P li A l i R lt

7/12/05

Sensitivity Analyses & 
Design Perturbations
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& Conditions Prelim Analysis Results
• Review
• Plan AssessmentLegend Start Done

Cycle 1 Target Dates 

Modeling path


